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ABSTRACT 

AIm: Spinal cord injury (SCI) leads to an inflammatory response that generates substantial secondary damage within the tissue besides the 
primary damage. Ghrelin, 28 amino-acid peptide, has been shown to modulate the release of proinflammatory cytokines and exert anti-
inflammatory effects. The aim of the current study was to investigate the anti-inflammatory effects of ghrelin, in a rat model of SCI. 

mAterIAl and methOds: Wistar albino rats were divided as control, SCI, and ghrelin-treated (10 µg/kg/day, ip) SCI groups. In order to induce 
SCI, a standard weight-drop method that induced a moderately severe injury (100 g/cm force) at T10, was used. Injured animals were given 
either ghrelin or saline 15 min post-injury.      

results: In plasma samples, neuron-specific enolase (NSE) and S-100β protein levels were evaluated. Spinal cord samples were taken for 
histological examination or determination of myeloperoxidase (MPO) activity and DNA fragmentation. SCI caused significant increases in 
plasma NSE and S-100β levels and tissue MPO activity and DNA damage. On the other hand, ghrelin treatment improved histological findings 
as well as biochemical parameters while it failed to improve the impairment of the neurological functions due to SCI.  

COnClusIOn: The present study suggests that ghrelin could reduce SCI-induced oxidative stress and exert anti-inflammatory effects in the 
spinal cord following trauma.      
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ÖZ 

AmAÇ: Spinal kord hasarı (SKH) primer hasarın yanısıra doku içinde oluşan ikincil hasara yanıt olarak inflamasyona yol açar. Ghrelin 28 amino 
asit içeren bir peptiddir ve proinflamatuvar sitokinlerin salıverilmesini module ettiği ve antiinflamatuvar etkili olduğu gösterilmiştir. Bu 
çalışmanın amacı SKH modeli oluşturulan sıçanlarda ghrelinin etkisininin araştırılmasıdır. 

yÖntem ve GereÇler: Wistar albino sıçanlar kontrol, SKH ve SKH + ghrelin (10 µg/kg/day, ip) olarak üç gruba bölünmüştür. SKH oluşturmak 
için T10 düzeyinde orta şiddette yaralanma yapan (100 g/cm kuvvet) ağırlık düşürme yöntemi kullanıldı. Hasar sonrası ilk 15 dakikada ghrelin 
veya fizyolojik serum uygulandı. Birinci hafta sonunda motor işlev değerlendirilerek dekapitasyon yapıldı. Kanda nöron-spesifik enolaz (NSE) 
ve S-100β protein düzeyleri ölçüldü. Omurilik dokusunda ise histolojik ve biyokimyasal incelemeler (miyeloperoksidaz aktivitesi (MPO) ve DNA 
fragmantasyonu) bakıldı.       

BulGulAr: SKH grubunda kanda NSE, S-100β düzeylerinde ve dokuda MPO aktivitesi, DNA hasarında anlamlı bir artış görüldü. Diğer yandan 
ghrelin tedavisi SKH’ya bağlı olarak gelişen biyokimyasal ve histolojik değişiklerde düzelme sağlarken, motor işlev skorunda değişiklik yapmadı.   

sOnuÇ: Bu çalışma ghrelinin omurilikte travmayla indüklenen inflamasyonu ve oksidan hasarı azalttığını göstermektedir.        

AnAhtAr sÖZCÜKler: Ghrelin, Spinal kord hasarı, Nöroprotektif, Sıçan 
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InTRoduCTIon

Traumatic spinal cord injury (SCI) primarily produces vascular 
damage to arterioles, capillaries and venules, limiting the 
blood flow to cord tissue causing a necrotic lesion (50), while 

reperfusion of the tissues in the first few days following 
SCI results in the development of a secondary damage 
(20). Although the development of secondary damage is 
not completely understood, cellular apoptosis, increased 
release of excitatory amino acids, enhanced generation of 
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reactive oxygen species and excessive cytokine release with 
subsequent lipid peroxidation are thought to constitute 
the major pathway of secondary injury in SCI (3, 5, 6, 35, 
49). Traumatic injury to the spinal cord leads to a strong 
inflammatory response with the recruitment of peripherally 
derived inflammatory cells including macrophages, which 
initiate the activation and regulation of specific signaling 
molecules, among which cytokines play a prominent role (2). 
Thus, the final outcome of SCI is correlated with the extent of 
the initial physical damage as well as the following secondary 
events leading to the death of neurons and glia (20). 

Many pharmacological agents have been used targeting 
one or more mechanisms of the secondary injury and 
have been reported to be neuroprotective in a variety of 
animal models, but none has yet proved to be effective 
in ameliorating the effects of acute SCI in humans (32, 40, 
45). Ghrelin, identified as an endogenous ligand for the GH 
secretagogue receptor (GHS-R), is a novel 28-amino-acid 
peptide that is principally released from X/A-like cells in the 
oxyntic mucosa of the stomach (12, 31). Apart from its effect 
on energy balance (39), ghrelin has numerous biological 
actions, such as regulation of cardiovascular actions (47), 
modulation of cell proliferation and survival (4), inhibition 
of inflammation (15, 27, 46) and regulation of the immune 
functions (34). In an animal model of ischemia, ghrelin was 
shown to reduce infarct volume and inhibit apoptosis in the 
hypothalamic neurons (9). Miao et al (37) have demonstrated 
that decreased GHS-R-1a expression in the cerebral cortical 
neurons of rats with ischemia/reperfusion injury was reversed 
by ghrelin administration.  It was suggested that redox injury 
and apoptotic mechanisms could be inhibited by ghrelin in 
cortical neurons subject to injury (37). Recently it was shown 
that ghrelin also inhibited apoptotic cell death of spinal cord 
neurons and oligodendrocytes after moderate SCI, while 
release of mitochondrial cytochrome c and activation of 
caspase-3 were also significantly inhibited (33). In the light of 
the aforementioned studies, in the current study we aimed 
to determine possible anti-inflammatory effects of ghrelin on 
secondary neuronal damage following SCI using neurological, 
biochemical and histopathological approaches. 

MATeRIAl and MeThodS

Animals

Wistar albino rats (250-300 g) supplied by the Marmara 
University (MU) Animal Center (DEHAMER) were housed 
in an air-conditioned room with 12-h light and dark cycles, 
where the temperature (22±2oC) and relative humidity (65-
70%) were kept constant. All experimental protocols were 
approved by the MU Animal Care and Use Committee. 

Rats were randomly divided into three groups with 8 rats 
in each: 1) control group that underwent sham surgery 
and received intraperitoneal (ip) saline; 2) SCI group that 
underwent surgery for SCI induction and injected with 
ip saline; 3) SCI-induced and ghrelin (10 µg/kg/day, ip) 
administered group. Induction of SCI Anesthetized (ip 

ketamine and chlorpromazine; 100 mg/kg and 1 mg/kg, 
respectively) rats were positioned on a thermistor-controlled 
heating pad in a prone position and a rectal probe was 
inserted. Under sterile conditions, following T5-12 midline 
skin incision and paravertebral muscle dissection, spinous 
processes and laminar arcs of T7-10 were removed, while dura 
was left intact. Using modified weight-drop model for SCI (1), 
the rats were subjected to a 100 g/cm (10 g weight from 10 
cm height) force to the dorsal surface of their spinal cord via 
a stainless steel rod (3 mm diameter tip) that was rounded at 
the surface. The rod was dropped vertically through a 10 cm 
guide tube that was positioned perpendicular to the center 
of the spinal cord. Following the suturing of the incision, 
the rats were placed in a warming chamber and their body 
temperatures were maintained at approximately 37 °C until 
they were completely awake. 

A week after SCI induction, neurological examinations were 
performed in all 3 groups. Following the examination, the 
rats were decapitated to obtain plasma and spinal cord 
tissue samples (the epicenter to caudal parts of the injury) 
for the biochemical and histological analysis. Plasma levels 
of neuron-spesific enolase (NSE), and soluble protein-100β 
(S-100β) were assayed respectively as indices of neuron and 
astrocyte injury using ELISA kits for rats (USCN Life Science & 
Technology Company, Missouri, TX, USA).

Neurological Examination

The neurological examination scores were assessed according 
to motor function score of Gale et al. (18). All behavioral tests 
were conducted by a ‘blinded’ investigator. The sequence 
of testing animals by a given task was randomized for the 
animals. 

Measurement of Myeloperoxidase Activity

Myeloperoxidase (MPO) activity in tissues was measured by 
a procedure similar to that described by Hillegas et al. (25). 
Spinal cord tissue samples were homogenized in 50 mM 
potassium phosphate buffer with a pH of 6.0, and centrifuged 
at 41,400 g for 10 min. The pellets were then suspended in 
50 mM PB containing 0.5 % hexadecyltrimethylammonium 
bromide (HETAB). After three freeze and thaw-cycles, with 
sonication between cycles, the samples were centrifuged 
at 41,400 g for 10 min. Aliquots (0.3 ml) were added to 2.3 
ml of reaction mixture containing 50 mM PB, o-dianisidine, 
and 20 mM H2O2 solution. One unit of enzyme activity was 
defined as the amount of MPO present that caused a change 
in absorbance, measured at 460 nm for 3 min. MPO activity 
was expressed as U/g tissue.

DNA fragmentation assay 

Samples from spinal cord tissues were homogenized 
in 9x volumes of a lysis buffer (5 mM Tris–HCl, 20 mM 
ethylene diamine tetra-acetic acid (EDTA) and 0.5% (v/v) 
t-octylphenoxypolyethoxyethanol (Triton-X 100); pH 8.0). 
Two separate samples of 1 ml each were taken from the 
sample and centrifuged at 25 000 g for 30 min to separate the 
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to control group (Figure 3A). Prominent vacuolization and 
decreased staining intensity for LFB were observed when 
compared to control rats that had no evidence of myelin 
damage. The ghrelin-treated SCI group revealed near-normal 
morphological pattern in the H&E stained sections of both 
gray and white matter with preserved neuropil architecture 
(Figure 3C). Staining intensity for LFB was similar to that of 

intact chromatin in the pellet from the fragmented DNA in the 
supernatant. The supernatant was taken out to be saved and 
the pellet was re-suspended in 1 ml Tris-EDTA buffer (pH 8,0) 
(10 mM:1 mM). Both the supernatant and the re-suspended 
pellet were then assayed for DNA content determination by 
the diphenylamine reaction described by Burton (7).

Histological analysis

Tissues were investigated at light microscopic level by an 
experienced histologist who was unaware of the treatment 
conditions. The paraffin-embedded spinal cord samples 
were cut (5 µm thick) transversally and then stained 
with Hematoxylin & Eosin (H&E) to examine the general 
morphology of white and gray matter in all groups with an 
Olympus BX51(Tokyo, Japan) photomicroscope. Luxol fast 
blue (LFB) stain which is specific for myelin sheath (41) is 
used to investigate myelin damage. Bright blue LFB staining 
indicates myelinization, whereas pale blue stained regions 
show myelin damage or loss. 

Statistical Analysis

Statistical analysis was done using a GraphPad Prism 3.0 
(GraphPad Software, San Diego; CA; USA). All data are 
expressed as means ± S.E.M. Groups of data were compared 
with an analysis of variance (ANOVA) followed by Tukey’s 
multiple comparison tests. The neurological examination 
scores were evaluated by Mann-Whitney U test. Values of 
p<0.05 were considered as significant.

ReSulTS

The average neurological examination scores recorded 
one week after the SCI were significantly higher in the both 
saline- and ghrelin-treated SCI groups when compared with 
those of the sham-operated control group (p<0.001; Figure 
1A), but the scores of the ghrelin-treated SCI group were not 
different than those of the saline-treated SCI group.  On the 
other hand, plasma levels of S-100β protein and NSE, which 
were significantly elevated one week after SCI induction 
in the saline-treated group (p<0.001; Figure 1B, 1C), were 
suppressed in the ghrelin-treated SCI group (p<0.05). 

MPO activity in the spinal cord tissue was significantly 
elevated in the saline-treated SCI group, demonstrating 
enhanced infiltration of neutrophils to the inflamed cord 
tissue (p<0.001; Figure 2A). Although MPO activity in the 
ghrelin-treated SCI group was not reversed back to control 
levels, the reduction was significant with respect to saline-
treated SCI group (p<0.05). Similarly, in the spinal cord tissue 
samples of the saline-treated SCI group, DNA fragmentation  
indicating apoptosis was significantly increased as compared 
to the control group (p<0.001; Figure 4). However, SCI-induced 
increase in apoptosis was significantly suppressed by ghrelin 
treatment (p<0.05).

In histological sections stained with H&E, severe degeneration 
of the white matter and moderate degeneration of gray matter 
were observed in the saline-treated SCI group (Figure 3B), while 
neuropil architecture was apparently disrupted compared 

Figure 1: A) Gale’s motor function scores, B) plasma S-100β and, 
C) plasma neuron specific enolase (NSE) levels of the rats in the 
control (C), saline-treated spinal cord injury (SCI) and ghrelin-
treated SCI (SCI + Ghrelin) groups. Each group consists of 8 rats. 
Values are represented as mean ± SEM. **P<0.01, ***P<0.001 
compared to control group; +P<0.05 compared to saline-treated 
SCI group.
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the control group with less vacuole formation as compared to 
saline-treated SCI group. 

dISCuSSIon

It has been well established that free radical damage is an 
important pathological consequence of acute neural injury, 
while the generation of free radicals leads to subsequent 
lipid peroxidation and inflammation, which are thought to 
constitute a major pathway of secondary injury in SCI. Our 
data clearly demonstrates that treatment with ghrelin as a 
neuroprotective agent significantly inhibited SCI-induced 
neutrophil infiltration, lipid peroxidation and DNA damage 
in the spinal cord tissue, while the increased plasma S100-β 
and NSE levels were reduced back to control levels. However 
the findings revealed that ghrelin treatment failed to improve 
neurological deterioration observed following SCI.

The wide distribution of ghrelin in various organs, including 
lymphoid tissues (12, 23) suggests that it has other functions 
not directly associated with appetite control. Ghrelin has 
been shown to exhibit anti-inflammatory functions in vitro(8, 
14) and in several animal models by enhancing immune 
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Figure 2: A) Myeloperoxidase (MPO) activity  and B) DNA 
fragmentation (%) in the spinal cord tissues of the rats in the 
control, saline-treated spinal cord injury (SCI) and ghrelin-treated 
SCI (SCI + Ghrelin) groups. Each group consists of 8 rats. Values 
are represented as mean ± SEM.  *p<0.05, **P<0.01, *** p<0.001 
versus control group; +p<0.05, vs saline-treated SCI group. 

Figure 3: A) The spinal cord of control group: Regular morphology 
of the gray and white matter; normal Luxol fast blue (LFB) 
staining intensity is shown in the inset. B) Vehicle–treated SCI 
group: Marked vacuolization of the neuropil in the gray matter 
was observed (arrow); severe axonal degeneration with vacuole 
formation (“*” in the inset) was apparent. Note the myelin sheaths 
with decreased staining intensity compared to the control group 
in the inset. C) Ghrelin-treated SCI group: Reduced damage in 
the white and gray matter with near-regular neuronal process 
morphology (arrow); normal staining intensity and less vacuole 
formation (“*”) with LFB is seen in the inset. Hematoxylene and 
Eosin stain X 400, insets LFB stain X 400, original magnification.
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dose was found to be not effective. Ghrelin was administered 
immediately after injury and then further injected every 6 h 
for 1 day. In the present study, the neurological examination 
based on motor function scores was not improved by 10 μg/
kg ghrelin treatment. Although the treatment was continued 
daily for 1 week, it appears that the dose was not sufficient 
to reverse the neurological scores that included behavioral 
and motor aspect. On the other hand, ghrelin treatment 
depressed the elevated serum S100-β and NSE levels, which 
are early predictors of outcome in head-injured and stroke 
patients (17, 24, 42) and their elevation reflects increased 
severity of the primary hypoxic ischemic insult (19). The 
neuronal marker studied most extensively in cerebral 
ischemia is NSE, a neuron-specific intracytoplasmic enzyme 
in the glycolytic pathway, which is released into cerebrospinal 
fluid (CSF) and blood after cerebral injury (11). Serum and CSF 
NSE levels were shown to be elevated in rodent models of 
focal ischemia in proportion to the eventual infarct volume. 
Moreover, increases in the peripheral levels of NSE have been 
specifically related to neuronal injury in traumatic brain injury 
(24), stroke (42), and epileptic seizures (43). Another glycolytic 
pathway enzyme, S100-β, is released mainly from astrocytes 
in multiple forms of CNS damage, including ischemic stroke, 
CNS trauma, and neurodegenerative diseases (44). 

Several pathophysiological events have been proposed to 
contribute to secondary neuronal dysfunction and death, and 
included events such as ischemia, edema, ionic imbalances, 
compromised energy metabolism, and biochemical changes 
as responsible of the resulting neurotoxicity (3, 35). During 
secondary degenerative response following SCI, apoptosis 
of the neurons and oligodendrocytes causes progressive 
degeneration of the spinal cord and spinal cord dysfunction 
(36, 48). The results confirm that the ghrelin alleviates 
secondary degenerative response and inhibits apoptosis of 
the neurons following SCI. Based on the current data, ghrelin 
was shown to have efficacy in abating neural damage in 
spinal cord injury and further experimental studies would 
provide fundamental information for the effective design and 
execution of clinical trials using ghrelin as a neuroprotective 
treatment.
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