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The innate immune response to coxsackievirus
B3 predicts progression to cardiovascular disease
and heart failure in male mice
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Abstract

Background: Men are at an increased risk of dying from heart failure caused by inflammatory heart diseases such
as atherosclerosis, myocarditis and dilated cardiomyopathy (DCM). We previously showed that macrophages in the
spleen are phenotypically distinct in male compared to female mice at 12 h after infection. This innate immune
profile mirrors and predicts the cardiac immune response during acute myocarditis.

Methods: In order to study sex differences in the innate immune response, five male and female BALB/c mice
were infected intraperitoneally with coxsackievirus B3 (CVB3) or phosphate buffered saline and their spleens were
harvested 12 h later for microarray analysis. Gene expression was determined using an Affymetrix Mouse Gene 1.0
ST Array. Significant gene changes were verified by quantitative real-time polymerase chain reaction or ELISA.

Results: During the innate immune response to CVB3 infection, infected males had higher splenic expression of
genes which are important in regulating the influx of cholesterol into macrophages, such as phospholipase A2
(PLA2) and the macrophage scavenger receptor compared to the infected females. We also observed a higher
expression in infected males compared to infected females of squalene synthase, an enzyme used to generate
cholesterol within cells, and Cyp2e1, an enzyme important in metabolizing cholesterol and steroids. Infected males
also had decreased levels of the translocator protein 18 kDa (TSPO), which binds PLA2 and is the rate-limiting step
for steroidogenesis, as well as decreased expression of the androgen receptor (AR), which indicates receptor
activation. Gene differences were not due to increased viral replication, which was unaltered between sexes.

Conclusions: We found that, compared to females, male mice had a greater splenic expression of genes which are
important for cholesterol metabolism and activation of the AR at 12 h after infection. Activation of the AR has
been linked to increased cardiac hypertrophy, atherosclerosis, myocarditis/DCM and heart failure in male mice and
humans.

Background
Cardiovascular disease (CVD) is the leading cause of
death in the USA [1]. Heart failure can result from a
number of cardiovascular conditions, including coronary
artery disease, myocarditis and dilated cardiomyopathy
(DCM), and men have a higher incidence and severity
of these diseases than women [1-5]. Infections, such as
coxsackievirus B3 (CVB3), toxins and hypersensitivity

drug reactions are known to induce myocarditis [6,7].
Although myocarditis occurs more often in men, the
rates of CVB3 infection are similar between men and
women worldwide [8-10]. The factors that predict pro-
gression to myocarditis and DCM remain unknown.
We have developed a mouse model of autoimmune

myocarditis and DCM using a heart-passaged strain of
CVB3 that includes infectious virus and heart antigens
in the inoculum [11]. All infected mouse strains develop
acute myocarditis from day 8 to 12 post infection (pi),
but only certain strains such as A/J and BALB/c develop
DCM by day 35 pi [11]. Male BALB/c mice infected
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with heart-passaged CVB3 develop more severe acute
myocarditis than females. More severe disease in males
is associated with increased Toll-like receptor (TLR)4
expression on mast cells and macrophages in the heart
during acute myocarditis and in the spleen at 12 h pi
[12-14]. TLR4 signalling following infection increases
cardiac interleukin (IL)-1b and IL-18 resulting in a more
prominent T helper type 1 (Th1) immune response in
males [12,13,15]. Although males have more severe
CVB3 myocarditis, the virus replicates to the same level
in the hearts of both male and female mice [12,13].
Gonadectomy of male BALB/c mice reduces myocardi-
tis, making males appear immunologically like females
with increased IL-4 and more alternatively activated
macrophages and regulatory T cells in the heart [14].
Furthermore, as early as 6 h-12 h after infection mast
cells and macrophages obtained from the spleen or peri-
toneum of males express more TLR4 than females, dis-
playing the same innate immunological profile in the
spleen as observed in the heart during acute myocarditis
[13].
As innate immunity directs the adaptive immune

response [13,16], we hypothesized that sex differences in
innate immune genes in the spleen would uncover path-
ways that are important in the susceptibility to acute
myocarditis and DCM. We found that the primary gene
networks elevated in males compared to females at 12 h
after infection involved cholesterol metabolism and acti-
vation of the androgen receptor (AR) in immune cells.

Methods
Mice
BALB/cJ (BALB/c) mice were obtained from The Jack-
son Laboratory (ME, USA). Mice were maintained
under pathogen-free conditions in the animal facility at
the Johns Hopkins School of Medicine and approval was
obtained from the Animal Care and Use Committee of
the Johns Hopkins University for all procedures.

Inoculations
Male and female BALB/c mice (8 to 10 weeks old) were
inoculated intraperitoneally (ip) with 103 plaque forming
units (PFU) of heart-passaged CVB3 (contains infectious
virus and heart tissue) diluted in sterile phosphate buf-
fered saline (PBS) and the spleen, pancreas and sera har-
vested at 12 h and 48 h pi. Age matched control males
and females received PBS only. In separate experiments,
mice received CVB3 on day 0 and echocardiography
was conducted at day 10 pi and hearts were collected
for histology at day 12 and 35 pi. CVB3 (Nancy strain)
was obtained from the American Type Culture Collec-
tion (ATCC, VA, USA), grown in Vero cells (ATCC)
and passaged through the heart as described [11]. Mice
inoculated ip with uninfected cardiac tissue supernatant

diluted in PBS, or PBS alone, do not develop myocardi-
tis [12-14]. For this reason PBS alone injections were
used as uninfected controls for the innate experiments.

Myocarditis and DCM
Hearts were fixed in 10% buffered formalin, stained with
haematoxylin and eosin (H&E) and myocarditis was
assessed as the percentage of the heart section with
inflammation compared to the overall size of the heart
section using a microscope eyepiece grid. The sections
were examined by two independent investigators. The
development of DCM was assessed by gross observation
of histology sections at low magnification and function-
ally by echocardiography. Individual experiments were
conducted three times with 7 - 10 mice per group.

Echocardiography
Cardiac function was examined by trans-thoracic echo-
cardiography in conscious mice using the Sequoia Acu-
son C256 ultrasound machine (PA, USA) equipped with
a 15 MHz linear transducer, as previously described
[17]. The heart was imaged in a two-dimensional mode
in the parasternal short axis view. From the M mode,
the left ventricular (LV) wall thickness and chamber
dimensions were determined. Ejection fraction repre-
sents stroke volume (the volume of blood ejected with
each beat) divided by end diastolic LV volume.

Plaque assay
The spleen and pancreas from individual mice were
homogenized at 10% weight/volume in 2% minimal
essential medium (MEM) and individual supernatants
were used in plaque assays to determine the level of
infectious virus [11]. Virus titres are expressed as the
mean plaque-forming unit (PFU)/g tissue ± standard
error of mean (SEM) and the limit of detection is
10 PFU/g of tissue. Individual experiments were
conducted three times with 5 - 7 mice per group.

ELISA
Spleens were homogenized at 10% weight/volume in 2%
MEM and individual supernatants used in ELISA
(seven/group). Secreted PLA2 levels were determined in
homogenized supernatants using USCN Life Science kits
(Wuhan, China), according to the manufacturer’s
instructions. PLA2 levels were expressed as pg/g of
spleen tissue ±SEM. The kit did not specify sPLA2

subtype.

RNA extraction and microarray
Individual spleens from uninfected PBS-inoculated con-
trol and heart-passaged CVB3-infected male and female
BALB/c mice were used for microarray analysis (five/
group, not pooled) or in a separate experiment to verify
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microarray data by real-time polymerase chain reaction
(RT-PCR; seven/group, not pooled). Spleens were har-
vested at 12 h pi, flash frozen in liquid nitrogen and
stored at -80°C. The spleens were homogenized in 2 mL
TRIzol (Invitrogen, CA, USA) according to the manu-
facturer’s protocol. The PureLink Micro-to-Midi Total
RNA Purification System (Invitrogen) was used for
extraction and purification of RNA. RNA was quantified
using a NanoDrop spectrophotometer and quality
assessed by RNA Nano LabChip analysis on an Agilent
BioAnalyzer 2100 (Agilent Technologies, CA, USA).
Processing and GeneChip analysis for microarray were
performed on five samples for each treatment group.
We processed 100 ng of the total RNA for hybridization
to Affymetrix Mouse Gene ST 1.0 microarrays using the
Affymetrix GeneChip Whole Transcript Sense Target
Labeling Assay, according to the manufacturer’s proto-
col and previously published methods (Affymetrix, CA,
USA) [18,19]. The Affymetrix Mouse GeneChip Gene
1.0 ST Array interrogates 28,853 well-annotated genes
with 764,885 distinct probes. The expertise, facilities
and instrumentation for Affymetrix GeneChip experi-
mentation and analyses were provided and supported by
the Johns Hopkins Malaria Research Institute.
Analysis of microarray data was performed with Par-

tek Genomics Suite (GS) Version 6.4 (Partek, MO,
USA). Gene expression patterns for each gene were
normalized to the median array intensity for all chips
and data from infected animals was normalized to
uninfected PBS controls [18]. Microarray data were
analysed with Partek GS software by 2-way ANOVA in
order to look for significant differences between condi-
tions (with sex and infection as factors) and then
P values and fold changes were generated using Fish-
er’s least significant difference (LSD) post hoc analysis
for comparisons of sex. False discovery rate (FDR)
corrections for multiple comparisons (Benjamini-
Hochberg) were applied to reduce the total number of
false-positives. Genes were considered significant if
they had a P value less than 0.05. Ingenuity Pathway
Analysis (IPA; Ingenuity Systems, CA, USA) was used
to generate IPA network data by inputting microarray
data analysed with Partek GS. Ingenuity generates net-
works by identifying published gene relationships and
provides an IPA score (P value) indicating the likeli-
hood that the significantly up or down-regulated genes
found in our microarray would be present in a given
network. The P value is calculated as the -log of the
Fisher’s exact test.

Microarray data accession number
The Affymetrix gene expression data were deposited to
the GEO http://www.ncbi.nlm.nih.gov/geo with acces-
sion number GSE26630.

Validation of microarray data by quantitative RT-PCR
Results obtained from microarray data were verified in a
separate experiment using seven mice/group. Total RNA
from spleens was validated by qRT-PCR using Assay-
on-Demand primers and probe sets and the ABI 7000
Taqman System from Applied Biosystems (CA, USA),
according to Rangasamy et al. [20]. Hypoxanthine phos-
phoribosyltransferase 1 (HPRT) was used as a normali-
zation control. There was no significant difference in
HPRT expression in the spleen between males and
females before or after infection. The mRNA data are
presented as a relative gene expression (RGE). RGE is
calculated as the ratio of target gene expression [fold
change of messenger RNA (mRNA) of interest) to the
normalization control gene expression (fold change of
normalization control mRNA). Data is expressed as the
mean of seven mice/group ± SEM. Normally distributed
data were analysed by the Student’s t test. The Mann-
Whitney U test was used to evaluate nonparametric
data. A value of P < 0.05 was considered significant.

Statistical analysis
Statistical analysis of the microarray data is described in
the ‘RNA Extraction and Microarray’ section of the
Methods. All other data were analysed by the Student’s
t test for normally distributed data and the Mann-Whit-
ney U test for nonparametric data. A value of P < 0.05
was considered significant.

Results
Males develop increased myocarditis and progress to
heart failure and DCM
We showed previously that male BALB/c mice with
acute CVB3 myocarditis develop significantly increased
inflammation in the heart compared to females, while
the virus replicates in the heart at the same level in
both sexes [12,13]. Increased acute CVB3 myocarditis in
males- compared to females (Figure 1A) was associated
with reduced heart function with a lower ejection frac-
tion by echocardiography at day 10 pi (Figure 1B). An
ejection fraction ≤45% is indicative of heart failure [21].
By day 35 pi male hearts became dilated while female
hearts appeared normal (Figure 1C).

Genes altered in male versus female spleens prior to and
following infection
Previously, we showed that immune factors that deter-
mine sex differences in CVB3 myocarditis, such as
increased TLR4 expression on mast cells and macro-
phages following CVB3 infection, are upregulated as
early as 12 h pi in the spleen of male compared to
female mice [13,22]. As the innate immune response in
the spleen is important in driving the adaptive immune
response, we examined sex differences in gene
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expression by microarray at 12 h in the spleens of male
and female BALB/c mice inoculated with 103 PFU
CVB3 or PBS ip on day 0. Although we conducted a
two-way ANOVA analysis of data from the four groups
(males versus females, PBS versus CVB3), in this paper
we report only the effect of sex (we do not report gene
differences between PBS versus CVB3 infected groups).
After the two-way ANOVA, we performed a post-hoc

Fisher’s LSD analysis in order to identify gene changes
between uninfected males and uninfected females or
infected males and infected females with a P < 0.05
(Table 1). FDR corrections were applied in order to
reduce the total number of false-positives. The main
category of genes that was identified following FDR ana-
lysis in infected or uninfected male versus female
spleens was × and Y-linked genes (Table 1). These ×
and Y-linked genes are routinely observed in microarray
studies of sex differences in hearts from humans and
mice [23].

Genes increased in male versus female spleens prior to
infection
As our previous research has shown that distinct
immune differences exist between infected males and
infected females at 12 h pi in the spleen that relate to

heart disease, we analysed the microarray data without
correcting for multiple comparisons. The primary pro-
blem with this type of analysis is that it is likely to gen-
erate false positives. Thus, findings must be verified with
other methods such as RT-PCR or ELISA. We suspect
that small gene changes will be important indicators of
disease susceptibility because the innate immune
response to CVB3 between males and females is very
similar, differing mainly in amplitude (severity) [12-14].
For example, both male and female splenocytes upregu-
late TLR4 following CVB3 infection but more immune
cells express TLR4 in males than in females [13]. Genes
found to be increased in uninfected males versus unin-
fected females are listed in Table 2.
Using mRNA obtained in a separate experiment from

the one used for the microarray analysis, we verified by
qRT-PCR that the top five genes listed in Table 2 were
more highly expressed in uninfected males compared to
uninfected females (Table 2, Figure 2). Several of these
genes are important in regulating oxidative stress to
infection including Cyp2e1, aldehyde dehydrogenase
(Aldh1a7) and sulphotransferase 1e1 (Sult1e1; Figure 2).
The cytochrome P450 Cyp2e1 is known to be elevated
in men and is important in metabolizing cholesterol and
steroids. Cyp2e1 also induces the production of reactive
oxygen species (ROS) that activate proinflammatory
responses and reduce viral replication [24,25]. Several
other genes reported to be important in promoting
heart disease and regulating lipid metabolism were ele-
vated in the spleen of uninfected males compared to
uninfected females (Table 2). These genes included: car-
bonic anhydrase 3 (Ca3), an enzyme known to contri-
bute to cardiac hypertrophy and heart failure when
expressed in the heart [26]; haptoglobin (Hp), a biomar-
ker of inflammation and cardiovascular disease (CVD)
[27]; and heat shock protein 90 (Hsp90aa1; Table 2).
We verified that these genes had a higher expression in
uninfected males by qRT-PCR even for Hsp90, which
had a fold change of only 1.19 (Table 2, Figure 2). We
did not verify all of the genes identified in Table 2 and
so other genes in this list could include false positives.
Our findings suggest that uninfected males have an
underlying immune profile in the spleen that may pre-
dispose them to a proinflammatory response and
inflammatory heart disease following infection.

Endocrine system development and function genes
increase in CVB3 infected males compared to infected
females at 12 h pi
Analysis of the microarray data, without correcting for
multiple comparisons, revealed a number of genes
expressed more highly in CVB3 infected males than in
infected females (data not shown). IPA of the data
found that the gene network with the most genes

Figure 1 Males develop increased myocarditis and progress to
heart failure and myocarditis and dilated cardiomyopathy
(DCM). Male and female BALB/c mice were inoculated
intraperitoneally with 103 plaque forming units of heart passaged
coxsackievirus B3 on day 0 and (A) myocarditis assessed
histologically at day 12 post infection (pi) and (B) heart function (%
ejection fraction) assessed by echocardiography at day 10 pi. An
ejection fraction ≤45% indicates heart failure. (C) Dilation is
observed in male hearts (right) but not in female hearts (left) in
histology sections at day 35 pi. Magnification × 5. DCM was
confirmed in males but not females at day 90 pi by
echocardiography (data not shown). Data show the mean ±
standard error of the mean of 7 - 10 mice per group. **, P < 0.01.
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Table 1 Genes altered in the spleen of males compared to females using false discovery rate analysis

GenBank Gene Gene name Fold increase P value

Higher expression in uninfected males

NM_012011 Eif2s3y Eukaryotic translation initiation factor 2 53.88 3.3 × 10-22

NM_012008 Ddx3y DEAD box polypeptide, Y-linked 38.95 1.8 × 10-20

NM_009484 Uty Ubiquitously transcribed tetratricopeptide repeat gene 23.87 2.3 × 10-17

NM_011419 Jarid1d Jumonji, AT rich interactive domain 12.21 3.5 × 10-16

Lower expression in uninfected males

NR_001463 Xist Inactive X-specific transcripts -64.65 4.2 × 10-20

NM_009483 Utx Ubiquitously transcribed tetratricopeptide repeat gene -1.45 1.7 × 10-7

NM_012011 Eif2s3x Eukaryotic transl. initiation factor 2 -1.33 1.2 × 10-5

Higher expression in infected males

NM_012011 Eif2s3y Eukaryotic transl. initiation factor 2 51.01 4.1 × 10-22

NM_012008 Ddx3y DEAD box polypeptide, Y-linked 39.24 1.7 × 10-20

NM_009484 Uty Ubiquitously transcribed tetratricopeptide repeat gene 24.99 1.8 × 10-17

NM_011419 Jarid1d Jumonji, AT rich interactive domain 12.21 3.5 × 10-16

Lower expression in infected males

NR_001463 Xist Inactive X-specific transcripts -62.49 4.8 × 10-20

NM_009483 Utx Ubiquitously transcribed tetratricopeptide repeat gene -1.64 3.8 × 10-9

NM_012010 Eif2s3x Eukaryotic translation initiation factor 2 -1.33 1.1 × 10-5

NM_011861 Pacsin1 Protein kinase C, casein kinase -1.24 2.1 × 10-6

Table 2 Genes with greater expression in the spleen of males compared to females prior to infection without
correction for multiple comparisons

GenBank Gene Gene name Fold increase P value

NM_009830 Ccne2 Cyclin E2 1.90 0.008

NM_021282 Cyp2e1 Cytochrome P450 2e1 1.80 9.4 × 10-4

NM_007606 Ca3 Carbonic anhydrase 3 1.78 0.01

NM_011921 Aldh1a7 Aldehyde dehydrogenase family 1a7 1.68 0.03

NM_023135 Sult1e1 Sulphotransferase family 1e1 1.65 0.002

NM_007691 Chek1 Checkpoint kinase 1 1.64 0.03

NM_001012273 Birc5 Baculoviral IAP/Survivin 1.63 0.04

NM_020504 Cldn13 Claudin 13 1.62 0.03

NM_025569 Mgst3 Microsomal glutathione S-transferase 3 1.61 0.04

NM_010360 Gstm5 Glutathione S-transferase, mu5 1.59 0.04

NM_008253 Hmgb3 High mobility group box 3 1.56 0.03

NM_017370 Hp Haptoglobin 1.53 0.03

NM_172479 Slc38a5 Solute carrier family 38, member 5 1.53 0.04

NM_177744 Apol10a Apolipoprotein L 10a 1.53 0.02

NM_028039 Esco2 Establishment of cohesion 1 homolog 2 1.53 0.04

NM_008613 Mns1 Meiosis-specific nuclear structural protein 1.52 0.04

NM_009479 Uros Uroporphyrinogen III synthase 1.51 0.03

NM_029522 Gpsm2 G-protein signalling modulator 2 1.50 0.04

NM_013467 Aldh1a1 Aldehyde dehydrogenase 1a1 1.49 0.03

NM_010480 Hsp90aa1 Heat shock protein 90kDa alpha 1.19 0.04
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present, and thus the highest IPA score, from our study
of the spleen of infected males compared to infected
females involved endocrine system development and func-
tion with an IPA score of 42 (P = 1 × 10-42; Figure 3). The
IPA score (P value) indicates the likelihood that the signifi-
cantly up or down-regulated genes found in our microar-
ray would be present in a given gene network. Using
mRNA obtained in a separate experiment from the one
used for the microarray analysis, we verified by qRT-PCR
several of the genes shown in Figure 3. Cyp2e1 was the
most highly expressed gene in this network with a fold

increase of 1.8 (P = 9.4 × 10-4; Figure 3). Cytochrome
P450 s such as aromatase play a critical role in the meta-
bolism of steroids [28]. We were surprised to find that the
AR was downregulated in the spleen of CVB3 infected
males compared to infected females (Figure 3). However,
it has been reported that elevated levels of testosterone
decrease mRNA expression of the AR but increase AR
protein and indicate activation or the use of the receptor
[28,29]. Hsp90 acts as a chaperone preventing movement
of the AR to the nucleus. We found that Hsp90 mRNA
was more highly expressed in males prior to infection
(Table 2, Figure 2). We verified that Cyp2e1 (Figure 3 and
4A) and the macrophage scavenger receptor (Msr1; Fig-
ures 3 and 4B), which transports oxidized lipids into
macrophages, had greater expression in CVB3 infected
males than infected females at 12 h pi. Reduced mRNA
expression of the AR in CVB3 infected males compared to
infected females was also verified by qRT-PCR (Figure
4C). TSPO is the rate-limiting step for steroid synthesis
and is expressed in mast cells, macrophages, heart tissue
and the spleen, for example [30]. We found that, similar to
the AR, TSPO mRNA levels were also decreased in
infected males compared to infected females at 12 h pi in
the spleen (Figure 4D). We did not verify other genes
from this network and it is likely that some of the genes
shown in Figure 3 are false positives. However, we verified
that Msr1, TSPO, AR and Cyp2e1, genes critical for cho-
lesterol and steroid synthesis, are more elevated or ‘acti-
vated’ in the spleen of infected males compared to
infected females at 12 h pi.

CVB3 replicates at the same level in females and males
during the innate immune response
In order to examine whether sex differences in gene
expression in CVB3 infected males and infected females
were related to viral replication, we inoculated male and
female BALB/c mice with 103 PFU CVB3 or PBS ip on
day 0 and examined the level of viral replication in the
spleen and pancreas at 12 and 48 h pi (Figure 5). No viral
replication was detected in uninfected PBS controls (data
not shown) or at 12 h in the spleen of infected mice (Fig-
ure 5A), confirming earlier findings [22]. There was no
significant difference in viral replication between CVB3
infected males and infected females at 12 h pi in the pan-
creas or at 48 h pi in the spleen and pancreas (the pan-
creas is a target organ for CVB3 infection; Figure 5A and
5B). Thus, altered gene expression that occurs between
males and females at 12 h pi in the spleen by microarray
is not simply due to differences in viral replication.

Genes associated with cardiovascular disease increase in
CVB3 infected males compared to infected females at 12 h pi
The network with the second highest number of genes,
and thus second highest IPA score, identified by IPA of

Figure 2 Verification of genes increased in males compared to
females prior to infection. Gene changes between uninfected
males (Un-M) and uninfected females (Un-F) in Table 2 were verified
by quantitative real-time polymerase chain reaction. Genes
increased in males included: cyclin E2 (Ccne2); Cyp2e1; carbonic
anhydrase 3 (Ca3); aldehyde dehydrogenase (Aldh1a7);
sulphotransferase1e1 (Sult1e1); haptoglobin (Hp); and heat shock
protein 90 (Hsp90aa1). Relative gene expression (RGE) normalized to
hypoxanthine phosphoribosyltransferase (HPRT) is shown as the
mean ± standard error of the mean of seven mice per group. *, P <
0.05; **, P < 0.01; ***, P < 0.001.
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data that had not been corrected for multiple comparisons
in infected males compared to infected females was DNA
replication, recombination and repair, with an IPA score
of 41 (P = 1 × 10-41; data not shown). Remember, the IPA
score (P value) indicates the likelihood that the signifi-
cantly up or down-regulated genes found in our microar-
ray would be present in a given gene network. This gene
network also received the highest IPA score for data that

had not been corrected for multiple comparisons between
uninfected males and uninfected females, with an IPA
score of 46 (P = 1 × 10-46; data not shown). None of the
other networks comparing uninfected males to uninfected
females corresponded to those revealed for CVB3 infected
males versus infected females, which indicates that infec-
tion activated a distinct immune profile in the spleen of
males that was not simply due to baseline sex differences.

Figure 3 Endocrine system development and function genes increase in the spleen of CVB3 infected males at 12 h pi. Male and female
BALB/c mice were inoculated intraperitoneally with 103 plaque forming units of coxsackievirus B3 (CVB3) or phosphate buffered saline on day 0
and microarray was conducted on individual spleens at 12 h post infection (pi) (five/group). Ingenuity Pathway Analysis of microarray data that
had not been corrected for multiple comparisons revealed that the top gene network in males involved endocrine system development and
function (Network 1). Red and green represents genes significantly up- or down-regulated in CVB3 infected males compared to infected females,
respectively.
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Unexpectedly, we found that the networks with the
3rd and 5th highest IPA scores in the spleen of CVB3
infected males compared to those in the infected
females from data that had not been corrected for mul-
tiple comparisons included cardiovascular system devel-
opment and function with an IPA score of 38 (P = 1 ×
10-38; data not shown) and cardiovascular and metabolic
disease with an IPA score of 29 (P = 1 × 10-29; Figure 6,
Table 3). These CVD gene networks were not observed
in uninfected males versus uninfected females. Genes
with well known roles in promoting CVD that were
more highly expressed in the spleen of CVB3 infected
males compared to infected females at 12 h pi included
carbonic anhydrase (Ca1-Ca3; Figure 6, Table 2 and 3)
and PLA2 (Cpla2, Pla2g4c, Pla2g12a; Figure 6, Table 3)
[26]. Elevated lipoprotein-associated (Lp)-PLA2 is asso-
ciated with the development of atherosclerosis and
stroke [31]. Other key proteins in this network included:
farnesyl-diphosphate faresyltranserferase 1 (Fdft1), also
called squalene synthase, which increases intracellular
cholesterol levels [32]; MAP2 kinase 3 (Map2k3) which
has been shown to contribute to sex-based differences
in myocardial remodelling and heart failure [33,34]; and
the chemokine CXCL12 which regulates neutrophil and
macrophage function (Figure 6, Table 3) [35].
Using separate experiments from the one used for the

microarray, we verified by qRT-PCR or ELISA several of

the genes shown in Table 3. We confirmed that PLA2

was increased in the spleen of CVB3 infected males ver-
sus infected females using ELISA (Figure 7A) and that
infected males had greater mRNA expression of carbonic
anhydrase 1 (Ca1; Figure 7B) and squalene synthase
(Fdft1; Figure 7C) by qRT-PCR. Although we were able
to confirm that carbonic anhydrase 3 (Ca3) expression
was greater in uninfected males than uninfected females
(Figure 2), we were unable to confirm that Ca3 was ele-
vated in CVB3 infected males by RT-PCR. We did not
verify other genes in Table 3 and so the list could include
other false positives. However, we were able to verify that
Ca1, PLA2 and squalene synthase had higher expression
in the spleen of CVB3 infected males than in infected
females at 12 h pi (Figure 7). Thus, a number of genes
associated with the development of CVD and heart fail-
ure, and genes that regulate cholesterol metabolism,
show greater expression in the spleen of CVB3 infected
males during innate immunity. Our findings indicate that
these genes may be involved in initiating the immune
response that results in inflammatory heart disease.
Further studies are necessary to confirm their role.

Figure 4 Verification of endocrine system development and
function genes. Using a separate experiment from the one used
for the microarray, gene changes in Figure 3 were verified by
quantitative real-time polymerase chain reaction between
coxsackievirus B3 infected males (V-M) and infected females (V-F).
Verified genes included: (A) Cyp2e1; (B) the macrophage scavenger
receptor (Msr1); (C) the androgen receptor (AR); and (D) translocator
protein 18 kDa (TSPO). Relative gene expression (RGE) normalized to
hypoxanthine phosphoribosyltransferase (HPRT) is shown as the
mean ± standard error of the mean of seven mice per group.
*, P < 0.05; **, P < 0.01.

Figure 5 CVB3 replicates at the same level in males and
females during the innate immune response. Male and female
BALB/c mice were inoculated intraperitoneally with 103 plaque
forming units (PFU) of coxsackievirus B3 (CVB3)or phosphate
buffered saline (PBS) on day 0 and the level of viral replication in
the spleen (A) and pancreas (B) examined at 12 h and 48 h post
infection. No viral replication was detected in uninfected PBS
controls. No significant differences in viral replication were observed
in CVB3 infected males compared to infected females. Data show
the mean ± standard error of the mean of 5 - 7 mice pergroup.
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Discussion
Recent evidence indicates that the innate immune
response is critical in determining the adaptive response
to infection or vaccination. We previously showed that as
early as 12 h pi males respond to CVB3 infection with an
elevated proinflammatory response [13]. Elevated TLR4

expression on mast cells and macrophages in the spleen
and heart of CVB3 infected males not only increases
acute myocarditis but induces expression of the profibro-
tic cytokine IL-1b resulting in cardiac dilatation and
heart failure later [13-15,36]. In this study, we examined
the sex differences in gene expression in the spleen of

Figure 6 Cardiovascular disease genes increase in the spleen of CVB3 infected males at 12 h pi. Male and female BALB/c mice were
inoculated intraperitoneally with 103 plaque forming units of coxsackievirus B3 (CVB3) or phosphate buffered saline on day 0 and a microarray
conducted on individual spleens at 12 h pi (five/group). Ingenuity Pathway Analysis of microarray data that had not been corrected for multiple
comparisons revealed that genes associated with cardiovascular disease were increased in CVB3 infected males compared to infected females
(Network 5). Red and green represents genes significantly up- or down-regulated, respectively.
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BALB/c mice prior to, and during, the innate immune
response to CVB3 infection. We found that FDR analysis
of sex differences following infection revealed mainly dif-
ferences in × and Y-linked genes. However, by analysing
the microarray data without correcting for multiple com-
parisons we were able to identify by Partek and Ingenuity
software and to verify by qRT-PCR and ELISA a number
of other gene changes between sexes. Similar to our find-
ings, several studies in rodents and humans examining
sex differences in heart disease using FDR analysis
yielded few gene changes aside from × and Y-linked
genes [4,23,34,37]. This is an important issue for the
study of sex differences in heart disease and other
chronic inflammatory conditions. These findings suggest
that small gene changes are likely to be important in
driving sex differences in inflammatory diseases. Most of
the low-fold gene changes we verified from the IPA net-
works involved genes critical to the regulation of choles-
terol and steroid synthesis in immune cells and in
macrophages in particular (Figure 8).
For many years it has been known that underlying sex

differences exist in the expression of hepatic enzymes such
as cytochrome P450 s, sulphotransferases and glutathione
S-transferases [24,38]. We verified that male spleens have
a higher expression of Cyp2e1 and Sult1e1 (Table 2, Fig-
ures 2 and 4). These enzymes are important in metaboliz-
ing drugs, steroids, fatty acids and environmental
chemicals, as well as amplifying a protective immune
response against infection. Thus, elevated levels of these

enzymes in the spleen of males may predispose them to
increased inflammation following CVB3 infection.
In addition, we found that males respond to CVB3 infec-

tion by upregulating genes specifically involved in choles-
terol metabolism (Figure 8). Squalene synthase (Fdft1)
regulates intracellular cholesterol levels particularly the
endogenous production of steroid hormones, vitamin D,
bile acids and lipoprotein particles (Figures 6, 7 and 8,
Table 3). Squalene synthase inhibitors have been found to
reduce plasma levels of total- and low-density lipoprotein
(LDL)-cholesterol in clinical studies [32]. Another source
of cholesterol for macrophages comes from extracellular
LDL-cholesterol. LDL is recruited from the circulation to
the cell wall where it becomes oxidized by secreted PLA2

(sPLA2) among other factors [39]. The superfamily of
PLA2 enzymes includes 15 distinct groups that fall into
four main categories: secreted (sPLA2); cytosolic (cPLA2);
calcium-independent PLA2; and Lp-PLA2 [40]. Approxi-
mately 80% of Lp-PLA2 is associated with LDL in the sera,
and elevated levels of Lp-PLA2 and sPLA2s occur in
patients with atherosclerosis [31,40,41]. PLA2 catalyzes the
removal of fatty acids from the sn-2 position of membrane
phospholipids releasing arachidonic acid for the genera-
tion of lipid mediators that are crucial for many inflamma-
tory processes such as leukotrienes, prostaglandins and
thromboxanes [42,43]. Increased sPLA2 levels have been
associated with a number of inflammatory conditions
including: rheumatoid arthritis; sepsis; psoriasis; pancreati-
tis; and cancer [43,44]. cPLA2 levels increase in phagocytic

Table 3 Cardiovascular disease, metabolic disease, and genetic disorder genes (Network 5)

GenBank Gene Gene name Fold increase P value

Higher expression in males

NM_007606 Ca3 Carbonic anhydrase 3 1.78 0.01

NM_183423 Pla2g12a Phospholipase A2, group XIIA 1.43 0.02

NM_001004762 Pla2g4c Phospholipase A2, group IVC 1.40 0.02

NM_145392 Bag2 BCL2-associated athanogene 1.32 0.02

NM_009801 Ca2 Carbonic anhydrase 2 1.31 0.03

NM_011356 Frzb Frizzled-related protein 1.20 0.02

NM_033037 Cdo1 Cysteine deoxygenase 1 1.19 0.01

NM_010191 Fdft1 Farnesyl-diphosphate farnesyltransferase 1 1.18 0.02

NM_008928 Map2k3 MAP2 kinase 3 1.15 0.03

NM_011568 Thoc4 THO complex 4 1.13 0.04

NM_011675 Uck1 Uridine-cytidine kinase 1 1.13 0.04

NM_001012477 Cxcl12 Chemokine ligand 12 1.12 0.005

NM_016965 Nckap1 NCK-associated protein 1 1.12 0.04

Lower expression in males

NM_009331 Tcf7 Transcr. factor 7, T cell-specific -1.33 0.02

NM_009916 Ccr4 Chemokine receptor 4 -1.31 0.0002

NM_008509 Lpl Lipoprotein lipase -1.31 0.005

NM_008354 Il12rb2 Interleukin 12 receptor, beta 2 -1.28 0.01
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cells, such as mast cells, macrophages and neutrophils, fol-
lowing their activation where cPLA2 has been found to be
essential for phagocytic function [42]. Similarly, sPLA2 is
secreted from mast cells and macrophages following acti-
vation. In this study we were able to verify increased
sPLA2 in the spleen of CVB3 infected males compared to
infected females (Figures 6 and 7A, Table 3). PLA2 is also
a ligand for TSPO and so elevated levels of PLA2 in the
spleen of males could facilitate AR-mediated activation of
immune cells during the innate immune response to
CVB3 infection (Figure 8). Oxidized-LDL becomes a
ligand for LDL receptors (LDLR) and macrophage scaven-
ger receptors (Msr1) that transport cholesterol into
macrophages to be metabolized to steroids and other lipid
mediators that increase proinflammatory responses (Figure
8) [39]. Our observation of greater expression of sPLA2

and Msr1 in the spleen of CVB3 infected males may allow
oxidation and uptake of LDL-cholesterol and activation of

TSPO for the production of steroids in splenic macro-
phages (Figures 4 and 7). Interestingly, PLA2 expression in
the heart was found to be a sex-related gene that predicted
the progression to heart failure in CVD patients [34]. Hap-
toglobin was also more highly expressed in the spleen of
males prior to infection (Table 2, Figure 2). By binding
Apo-AI, haptoglobin inhibits the transfer of lipids from
pro-inflammatory LDL particles to anti-inflammatory
HDL thereby potentially increasing LDL levels (Figure 8)
[39,45].
Findings from our study that examined sex differences

in the spleen correspond closely to clinical studies of
sex differences in gene expression in CVD and heart
failure patients. Sex studies of normal and diseased

Figure 7 Verification of cardiovascular disease genes in
infected males. Using separate experiments from the one used for
the microarray, gene changes in Table 3 were verified by ELISA or
quantitative real-time polymerase chain reaction (qRT-PCR) between
coxsackievirus B3 - infected males (V-M) and infected females (V-F).
Secreted phospolipase A2 (PLA2) was verified in the spleen at (A) 48
h post infection (pi) by ELISA, while (B) carbonic anhydrase 1 (Ca1)
and (C) squalene synthase (Fdft1) were verified by qRT-PCR at 12 h
pi. Relative gene expression (RGE) normalized to hypoxanthine
phosphoribosyltransferase is shown as the mean ± standard error of
the mean of seven mice per group. *, P < 0.05.

Figure 8 Genes increased in males involve regulation of
cholesterol metabolism and steroidogenesis. In this study we
verified that a number of genes that are important in regulating
cholesterol influx into cells and steroidogenesis are more highly
expressed in the spleen of males prior to, or during, the innate
immune response to coxsackievirus B3 (CVB3) infection. Genes with
a higher expression in males are shown in pink boxes, genes with
lower expression in males in green boxes and genes we did not
examine in purple boxes. We suggest the following hypothesis as
one possible scenario leading to increased inflammation in males.
Haptoglobin (Hp) is known to bind Apo-A1 preventing the
conversion of proinflammatory low-density lipoproteins (LDLs) to
anti-inflammatory high-density lipoproteins (HDLs), thereby
increasing the LDL levels. Elevated phospholipase A2 (PLA2) in males
may facilitate the oxidation (Ox) of LDL allowing it to bind the
macrophage scavenger receptor (Msr1/MSR) and import LDL-
cholesterol into immune cells, particularly macrophages. Increased
levels of squalene synthase in males may facilitate intracellular
cholesterol synthesis in immune cells. PLA2 is an endogenous ligand
for translocator protein 18 kDa (TSPO), the rate-limiting step for
steroidogenesis within cells. Cyp2e1 participates in the metabolism
of cholesterol and steroids and contributes to an increased
proinflammatory response in males. Increased production of
androgens within macrophages allows the androgen receptor (AR)
to release from its chaperone Hsp90 and move to the nucleus to
stimulate the proinflammatory immune response associated with
increased myocarditis and heart failure in males following CVB3
infection.
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hearts in rodents and humans have found sex differ-
ences in carbonic anhydrase (Table 2 and 3), PLA2

(Table 3), Map2k3 (Table 3) and the AR (Figure 3 and
4; see, for example, [4,23,34,37,46]. With an ever
increasing world population developing CVD a better
understanding of the genes that predispose men to cor-
onary heart disease and DCM is critical. Our findings
show that the gene changes that contribute to an
increased pro-inflammatory response in males are
initiated within hours of infection in the spleen.

Conclusions
Men are at an increased risk of developing atherosclero-
sis, myocarditis, DCM and heart failure compared to
women but the early immunological factors that drive
the proinflammatory response remain unclear. In this
study we found that the spleens of CVB3 infected male
mice had a greater expression of genes associated with
cholesterol and steroid influx and metabolism such as
PLA2, Msr1 and squalene synthase compared to infected
females. TSPO, the rate-limiting step for steroid synthesis
and the AR were decreased in CVB3 infected males com-
pared to infected females consistent with activation of
the receptors. Thus, increased cholesterol metabolism in
the spleen of males during the innate immune response
to CVB3 infection may drive the testosterone-mediated
proinflammatory response that we observe during acute
CVB3 myocarditis, including mast cell and macrophage
proliferation, NF�B activation and TLR4 signalling.
These findings have important implications for other
inflammatory CVDs that are increased in males.
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